Robust Planning for an Open-Pit Mining Problem under Ore-Grade Uncertainty

Daniel Espinoza¹ **Guido Lagos**² Eduardo Moreno³ Juan Pablo Vielma⁴

¹Department of Industrial Engineering, Universidad de Chile

²H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech

³School of Engineering, Universidad Adolfo Ibáñez

⁴Sloan School of Management, MIT

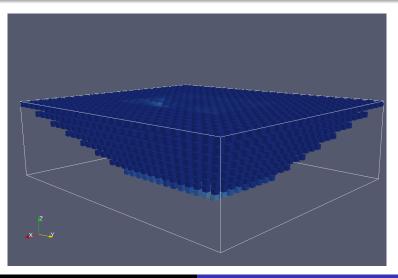
INFORMS 2012; Phoenix, AZ

Open-pit production planning problem

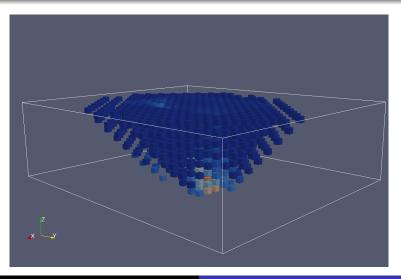
- 2 Stochastic programming models
 - Minimization of VaR
 - Minimization of CVaR
 - MCH & MCHe models
- 3 Computational results
- 4 Conclusions

Chuquicamata, Chile

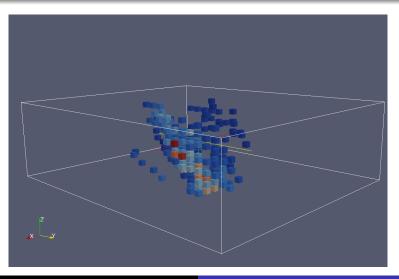
Block model. Color ~ amount of mineral (ore grade)



Which blocks to extract?



Between extracted ones, which to process?



Problem without uncertainty

Decisions: for each block $b \in B$,

extraction decision $x_b^e \in \{0, 1\}$, processing decision $x_b^p \in \{0, 1\}$

Objective: minimize loss

$$L\left((x^{e}, x^{p}), \rho\right) = \underbrace{(v^{e})^{\mathsf{T}} x^{e}}_{\text{ext, cost}} + \underbrace{(v^{p})^{\mathsf{T}} x^{p}}_{\text{proc, cost}} - \underbrace{(W^{p} \rho)^{\mathsf{T}} x^{p}}_{\text{proc, profit}}$$

Constraints:

- Precedence constraints
- Extraction & processing capacity
- ⇒ Precedence-constrained Knapsack problem (NP-hard)

UNCERTAINTY IN ORE GRADE ρ

- Why? High costs & operation is done only once \implies HIGHLY RISKY
 - Production plan $(x^e, x^p) \Longrightarrow$ random loss $L((x^e, x^p), \rho)$
 - Objective of our work:

Assess different risk-averse approaches

 Basic hypothesis: we can obtain an iid sample, as large as we want, of the ore grades vector ρ ∈ ℝ^B₊

Minimization of VaR Minimization of CVaR MCH & MCH- ϵ models

Open-pit production planning problem

- 2 Stochastic programming models
 - Minimization of VaR
 - Minimization of CVaR
 - MCH & MCH- ϵ models

3 Computational results

4 Conclusions

Minimization of VaR Minimization of CVaR MCH & MCH- ϵ models

Minimization of Value-at-Risk (VaR)

• Given $\epsilon \in (0, 1)$, for *L* loss r.v.:

 $VaR_{\epsilon}(L)$: "1- ϵ percentile of losses"

Is a non-convex risk measure.

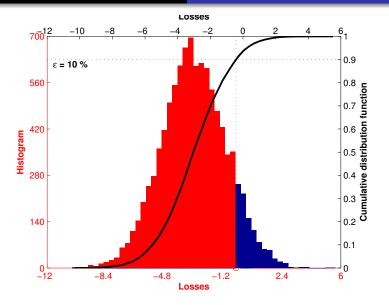
Model: given risk level ε,

$$\min_{(x^e, x^p) \in X} \operatorname{VaR}_{\epsilon} \left[L\left((x^e, x^p), \rho \right) \right]$$

• SAA approximation: take iid sample $\rho^1, \ldots, \rho^N \Longrightarrow$ approximate \mathbb{P} with $\mathbb{P}_N := \frac{1}{N} \sum_i \mathbf{1}_{\{\rho = \rho^i\}}$

→ Consistency: a.s. convergence in objective value and optimal solution set under mild assumptions

Minimization of VaR Minimization of CVaR MCH & MCH- ϵ models



Minimization of VaR Minimization of CVaR MCH & MCH- ϵ models

Minimization of Conditional Value-at-Risk (CVaR)

• Given $\epsilon \in (0, 1]$, for *L* atom-less loss r.v.:

 $CVaR_{\epsilon}(L)$: "mean of ϵ worst losses"

Is distortion risk measure: coherent, law-invariant & co-monotonic.

• Model: given risk level ϵ ,

$$\min_{(x^e, x^\rho) \in X} \mathbf{CVaR}_{\epsilon} \left[L\left((x^e, x^\rho), \rho \right) \right]$$

• SAA approximation: approximate \mathbb{E} using iid sample ρ^1, \ldots, ρ^N . Consistency under mild hypothesis.

Minimization of VaR Minimization of CVaR MCH & MCH- ϵ models

Modulated Convex-Hull (MCH) & MCH- ϵ models

• **Robust model**: given risk level $\epsilon \in [0, 1]$ and iid sample ρ^1, \ldots, ρ^N ,

 $\min_{(x^e, x^p) \in X} \; \max_{\rho \in \mathcal{U}_{\epsilon}} \; L\left((x^e, x^p), \rho\right)$

• In $(\Omega_N, \mathcal{P}, \mathbb{P}_N)$, equivalent to minimizing the risk measure

$$\epsilon \mathbb{E}(\cdot) + (1 - \epsilon) \underbrace{\mathsf{Worst-Case}(\cdot)}_{=\mathsf{CVaR}_{1/N}(\cdot)}$$

of losses $L((x^e, x^p), \rho)$

• MCH- ϵ model: minimize risk measure

$$\epsilon \mathbb{E}(\cdot) + (1 - \epsilon) \operatorname{CVaR}_{\epsilon}(\cdot)$$

of losses, which allows to perform a convergence analysis

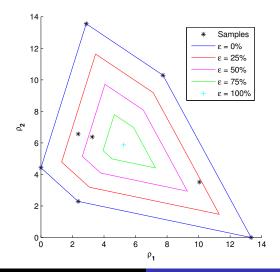
 Open-pit production planning problem
 Minimization of VaR

 Stochastic programming models
 Minimization of VaR

 Computational results
 Minimization of CVaR

 MCH & MCH-ε models
 MCH & MCH-ε

Example: U_{ϵ} for N = 8 samples of ρ in mine with 2 blocks



Open-pit production planning problem

2 Stochastic programming models

- Minimization of VaR
- Minimization of CVaR

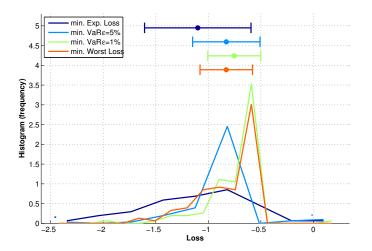
Computational results

4 Conclusions

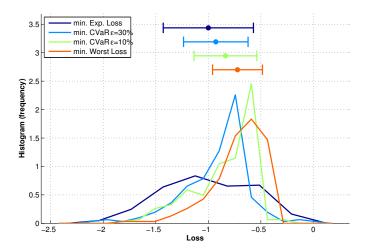
- Vein-type mine with $\approx 20K$ blocks, 20K scenarios (*TBsim* algorithm)
- Solve SAA approximation of each model (VaR, CVaR, MCH, MCH-ε)
 - taking N = 50, 100, 200, 400, ... samples
 - for several risk levels ϵ
- ! Also solve *minimization of worst loss* and *minimization of* expected loss
- SAA approximation \implies repetitions algorithm:
 - Find statistically optimal solution
 - Estimate optimality gap to "true" problem

Conclusions

VaR, N = 100, in-sample

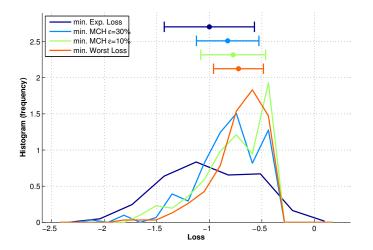


CVaR, N = 200, in-sample



Computational results Conclusions

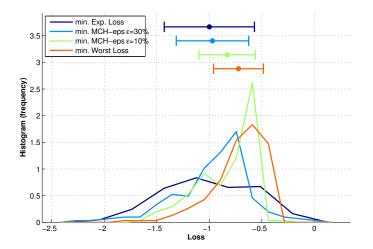
MCH, N = 200, in-sample



Computational results

Conclusions

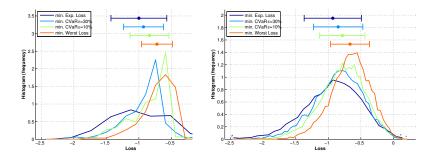
MCH- ϵ , N = 200, in-sample



CVaR, N = 200, in-sample vs. out-of-sample

(a) In-Sample histogram

(b) Out-of-Sample histogram



Open-pit production planning problem

2 Stochastic programming models

- Minimization of VaR
- Minimization of CVaR

3 Computational results

Conclusions

- VaR model: low risk aversion ⇒ inadequate for our problem
- CVaR, MCH & MCH- ϵ models: risk averse performance, controllable with parameter ϵ
- However behavior is not as clear when testing plan out-of-sample
- Slow statistical convergence of VaR, CVaR & MCH models: HIGH DIMENSIONALITY!
- Two-stage variant (extract → see ρ → process): no losses / fast convergence / not much difference between models