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Chuquicamata, Chile
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Block model. Color ∼ amount of mineral (ore grade)
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Which blocks to extract?

Espinoza, Lagos, Moreno, Vielma Robust Planning for an Open-Pit Mining Problem



Open-pit production planning problem
Stochastic programming models

Computational results
Conclusions

Between extracted ones, which to process?
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Problem without uncertainty

Decisions: for each block b ∈ B,

extraction decision xe
b ∈ {0,1}, processing decision xp

b ∈ {0,1}

Objective: minimize loss

L
(
(xe, xp), ρ

)
= (ve)Txe︸ ︷︷ ︸

ext. cost

+ (vp)Txp︸ ︷︷ ︸
proc. cost

− (W pρ)Txp︸ ︷︷ ︸
proc. profit

Constraints:
Precedence constraints
Extraction & processing capacity

⇒ Precedence-constrained
Knapsack problem (NP-hard)
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UNCERTAINTY IN ORE GRADE ρ

Why? High costs & operation is done only once =⇒ HIGHLY
RISKY

Production plan (xe, xp) =⇒ random loss L ((xe, xp), ρ)

Objective of our work:

Assess different risk-averse approaches

Basic hypothesis: we can obtain an iid sample, as large
as we want, of the ore grades vector ρ ∈ RB+
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Minimization of VaR
Minimization of CVaR
MCH & MCH-ε models

Minimization of Value-at-Risk (VaR)

Given ε ∈ (0,1), for L loss r.v.:

VaRε(L) : “1−ε percentile of losses”

Is a non-convex risk measure.
Model: given risk level ε,

min
(xe,xp)∈X

VaRε

[
L
(
(xe, xp), ρ

)]
SAA approximation: take iid sample ρ1, . . . , ρN =⇒
approximate P with PN := 1

N
∑

i 1{ρ=ρi}
→ Consistency: a.s. convergence in objective value and

optimal solution set under mild assumptions
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Minimization of VaR
Minimization of CVaR
MCH & MCH-ε models
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Minimization of VaR
Minimization of CVaR
MCH & MCH-ε models

Minimization of Conditional Value-at-Risk (CVaR)

Given ε ∈ (0,1], for L atom-less loss r.v.:

CVaRε(L) : “mean of ε worst losses”

Is distortion risk measure: coherent, law-invariant &
co-monotonic.
Model: given risk level ε,

min
(xe,xp)∈X

CVaRε

[
L
(
(xe, xp), ρ

)]
SAA approximation: approximate E using iid sample
ρ1, . . . , ρN . Consistency under mild hypothesis.
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Minimization of VaR
Minimization of CVaR
MCH & MCH-ε models

Modulated Convex-Hull (MCH) & MCH-ε models

Robust model: given risk level ε ∈ [0,1] and iid sample
ρ1, . . . , ρN ,

min
(xe,xp)∈X

max
ρ∈Uε

L
(
(xe, xp), ρ

)
In (ΩN ,P,PN), equivalent to minimizing the risk measure

ε E(·) + (1− ε) Worst-Case(·)︸ ︷︷ ︸
=CVaR1/N(·)

of losses L ((xe, xp), ρ)

MCH-ε model: minimize risk measure

ε E(·) + (1− ε) CVaRε(·)

of losses, which allows to perform a convergence analysis
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Minimization of VaR
Minimization of CVaR
MCH & MCH-ε models

Example: Uε for N = 8 samples of ρ in mine with 2 blocks
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Vein-type mine with ≈ 20K blocks, 20K scenarios (TBsim
algorithm)
Solve SAA approximation of each model (VaR, CVaR,
MCH, MCH-ε)

taking N = 50, 100, 200, 400, . . . samples
for several risk levels ε

! Also solve minimization of worst loss and minimization of
expected loss
SAA approximation =⇒ repetitions algorithm:

Find statistically optimal solution
Estimate optimality gap to “true” problem
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VaR, N = 100, in-sample
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CVaR, N = 200, in-sample
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MCH, N = 200, in-sample
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MCH-ε, N = 200, in-sample

−2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

H
is

to
g

ra
m

 (
fr

e
q

u
e
n

c
y
)

Loss

 

 

min. Exp. Loss

min. MCH−eps ε=30%

min. MCH−eps ε=10%

min. Worst Loss

Espinoza, Lagos, Moreno, Vielma Robust Planning for an Open-Pit Mining Problem



Open-pit production planning problem
Stochastic programming models

Computational results
Conclusions

CVaR, N = 200, in-sample vs. out-of-sample

(a) In-Sample histogram
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(b) Out-of-Sample histogram
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Conclusions

VaR model: low risk aversion =⇒ inadequate for our
problem
CVaR, MCH & MCH-ε models: risk averse performance,
controllable with parameter ε
However behavior is not as clear when testing plan
out-of-sample
Slow statistical convergence of VaR, CVaR & MCH-ε
models: HIGH DIMENSIONALITY!
Two-stage variant (extract→ see ρ→ process): no
losses / fast convergence / not much difference
between models
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