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Multistage Stochastic Linear Programming

Analysis of Stochastic Dual Dynamic Programming Method
Alex Shapiro (2010)

min
A1x1=b1
x1≥0

cT1 x1+E

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + E

 . . . + E

 min
BT xT−1+AT xT=bT

xT≥0

cTTxT

 . . .


Applications: planning problems in mining, energy, forestry, etc.

Challenges:

Tractability of E
Stagewise dependence of data process {ξt := (ct ,Bt ,At , bt)}t=1,...,T

Curse of dimensionality
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Two-stage stochastic programming

“True” problem:

min
Ax=b
x≥0

cTx + E

 min
Tx+W y=h

y≥0

qTy


Take random sample ξ1, . . . , ξN and approximate E ∼ 1

N

∑N
j=1

=⇒ Sample Average Approximation (SAA) problem:

min
Ax=b
x≥0

cTx +
1

N

N∑
j=1

 min
T jx+W jy=hj

y≥0

qjTy


︸ ︷︷ ︸

Q(x,ξj ):=︸ ︷︷ ︸
Q̃(x):=
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Two-stage stochastic programming

Cutting-plane method

Basic Ingredients

min
Ax=b
x≥0

cTx +
1

N

N∑
j=1

Q(x , ξj)︸ ︷︷ ︸
Q̃(x):=

where Q(x , ξ) := max
Tx+Wy=h

y≥0

qTy

Assume: relatively complete recourse, i.e. ∀ feasible x ,
Q(x , ξ) <∞ a.s.

⇒ 1
N

∑N
j=1 Q(·, ξj) convex piecewise-linear, and problem is

!!! For f convex: ∂f (x0) :=
{
d : ∀x f (x) ≥ f (x0) + dT(x − x0)

}
⇒ ∂Q(·, ξ)(x0) = −TT {π : π opt. sol. of dual of Q(x0, ξ)}
⇒ ∂

[
1
N

∑N
j=1 Q(·, ξj)

]
(x0) = − 1

N

∑N
j=1 T

jT{π :

. π opt. sol. of dual of Q(x0, ξ
j)}
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Two-stage stochastic programming

Cutting-plane method

Basic Ingredients

min
Ax=b
x≥0

cTx +
1

N

N∑
j=1

Q(x , ξj)︸ ︷︷ ︸
Q̃(x):=

where Q(x , ξ) := max
Tx+Wy=h

y≥0

qTy

Assume: relatively complete recourse, i.e. ∀ feasible x ,
Q(x , ξ) <∞ a.s.
Conclusion:

cTx +
1

N

N∑
j=1

Q(x , ξj) is:

easy to compute on given x

difficult to optimize

easy to compute subgradient on given x
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Two-stage stochastic programming

Cutting-plane method

Cutting Plane Algorithm

Given sample
{
ξj = (qj ,T j ,W j , hj)

}
j=1,...,N

,

0. k ← 1; LB1 ← −∞; UB1 ←∞; Q1(x)← LB1 ∀x
1. (“Forward Step”) Let xk be the solution of:

LBk ← min
Ax=b
x≥0

cTx + Qk(x)

2. (“Backward Step”) Compute:

Q̃(xk) ← 1
N

∑N
j=1 Q(xk , ξj)

gk ← − 1
N

∑N
j=1 T jTπj ,k (subgradient)

Let UBk ← cTxk + Q̃(xk).

If UBk − LBk ≤ ε, END.
Else (LBk < UBk), add plane Q̃(xk) + gkT(x − xk) to Qk :

Qk+1(x)← max{Qk(x), Q̃(xk) + gkT(x − xk)}

3. k ← k + 1, iterate from 1.
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Two-stage stochastic programming

SDDP algorithm for two-stage SP

SDDP algorithm I

Given sample
{
ξj = (qj ,T j ,W j , hj)

}
j=1,...,N

,

0. k ← 1; UB1 ←∞; LB1 ← −∞; Q1(x)← LB1 ∀x

1. Forward Step
1.1 Let xk be the solution of:

LBk ← min
Ax=b
x≥0

cTx + Qk(x)

1.2 Take subsample {ξ(j)}Mj=1 of {ξj}Nj=1 (N >> M), and with

values {ϑj := cTxk + Q(xk , ξ
(i))}Mj=1 compute (1− α)

confidence upper bound of “true” problem opt. value ϑ∗:

UBk ← ϑ+ zα/2σ̂ϑ/
√

M

where ϑ := 1
M

∑M
j=1 ϑj and σ̂2

ϑ := 1
M−1

∑M
j=1(ϑj − ϑ)2.

1.3 If UBk − LBk ≤ ε, END.
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Two-stage stochastic programming

SDDP algorithm for two-stage SP

SDDP algorithm II

2. Backward Step

2.1 Compute:

Q̃(xk) ← 1
N

∑N
j=1 Q(xk , ξj) = 1

N

∑N
j=1

 max
T jxk+W jy=hj

y≥0

qjTy


gk ← − 1

N

∑N
j=1 T jTπj,k (subgradient)

2.2 Add plane Q̃(xk) + gkT(· − xk) to Qk(·):

Qk+1(x)← max{Qk(x), Q̃(xk) + gkT(x − xk)}

3. k ← k + 1, iterate from 1.
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Multistage stochastic programming

“True” problem

min
A1x1=b1
x1≥0

cT1 x1+E

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + E

 . . . + E

 min
BT xT−1+AT xT=bT

xT≥0

cTTxT


Equivalently (Dynamic Programming equations):

min
A1x1=b1
x1≥0

cT1 x1 + E [Q2(x1, ξ2)]︸ ︷︷ ︸
Q2(x1):=

where

Qt(xt−1, ξt) := inf
Btxt−1+Atxt=bt

xt≥0

cTt xt + E [Qt+1(xt, ξt+1)]︸ ︷︷ ︸
Qt+1(xt)

t = 2, . . . ,T − 1

QT (xT−1, ξT ) := inf
BT xT−1+AT xT=bT

xT≥0

cTTxT

Assumptions

1 Process is stagewise independent, i.e. ξt+1 indep. of ξ1, . . . , ξt .
2 Problem has relatively complete recourse
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Multistage stochastic programming

SAA problem

Take random sample
{
ξ̃jt = (c̃tj , Ãtj , B̃tj , b̃tj)

}
j=1,...,Nt

for each stage

t = 2, . . . ,T . SAA problem is:

min
A1x1=b1
x1≥0

cT1 x1+
1

N2

N2∑
j=1

 min
B̃j2x1+Ãj2x2=b̃j2

x2≥0

c̃Tj2x2 +
1

N3

N3∑
j=1

 . . . +
1

NT

NT∑
j=1

 min
B̃jT xT−1+ÃjT xT=b̃jT

xT≥0

c̃TjT xT





Equivalently (Dynamic Programming equations):

min
A1x1=b1
x1≥0

cT1 x1 +
1

N2

N2∑
j=1

Q̃2,j(x1)︸ ︷︷ ︸
Q̃2(x1)

where

Q̃t,j(xt−1) := min
B̃tj xt−1+Ãtj xt=b̃tj

xt≥0

c̃Ttj xt +
1

Nt+1

Nt+1∑
j=1

Q̃t+1,j(xt)︸ ︷︷ ︸
Q̃t+1(xt)

t = 2, . . . ,T − 1

Q̃T ,j(xT−1) := min
B̃Tj xT−1+ÃTj xT=b̃Tj

xT≥0

c̃TTjxT
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: the idea

!!! Cost-to-go functions

Q̃t(xt−1) =
1

Nt

Nt∑
j=1

Q̃t,j(xt−1) t = 2, . . . ,T

are convex piecewise-linear
Approximate

min
A1x1=b1
x1≥0

cT
1 x1 + Q̃2(x1) by min

A1x1=b1
x1≥0

cT
1 x1 + Q2(x1)

min
B̃tjxt−1+Ãtjxt=b̃tj

xt≥0

c̃T
tj xt + Q̃t+1(xt) by min

B̃tjxt−1+Ãtjxt=b̃tj
xt≥0

c̃T
tj xt + Qt+1(xt)

where Q2(·), . . . ,QT (·) are convex, piecewise-linear and

Qt(·) ≤ Q̃t(·) t = 2, . . . ,T

In successive iterations, refine lower approximations Qt(·)
using subgradient of Q̃t(·):

Qk
t (·) ≤ Qk+1

t (·) ≤ Qk+2
t (·) ≤ . . . ≤ Q̃t(·)
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Forward step

At iteration k ≥ 1, we have lower approximations Q2, . . . ,QT

Take subsample {(ξ̃(j)2 , . . . , ξ̃
(j)
T )}Mj=1 of original sample

For j = 1, . . . ,M, take sampled process (ξ̃
(j)
2 , . . . , ξ̃

(j)
T ) and solve

min
A1x1=b1
x1≥0

cT1 x1 +Q2(x1) ⇒ x1j

ξ̃
(j)
t , xt−1,j ⇒ min

B̃t(j)xt−1,j+Ãt(j)xt=b̃t(j)
xt≥0

c̃T
t(j)

xt +Qt+1(xt) ⇒ xtj (ξ̃
(j)
[t]

)

t = 2, . . . ,T − 1

ξ̃
(j)
T , xT−1,j ⇒ min

B̃T (j)xT−1,j+ÃT (j)xT=b̃T (j)

xT≥0

c̃T
T (j)

xT ⇒ xTj (ξ̃
(j)
[T ]

)

obtaining candidate policy values x1j , x2j , . . . , xTj with cost

ϑj ←
T∑
t=1

cTt(j)xtj

It’s a (1− α) confidence upper bound of “true” opt. value ϑ∗:

UBk ← ϑ+ zασ̂ϑ/
√
M

where ϑ := 1
M

∑M
j=1 ϑj and σ̂

2
ϑ := 1

M−1

∑M
j=1(ϑj − ϑ)2.
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Backward step

We have candidate values x1, x2, . . . , xT .

At stage t = T :
For xT−1 = xT−1 and for j = 1, . . . ,NT , solve:

Q̃T ,j(xT−1) := min
B̃T,jxT−1+ÃT,jxT=b̃T,j

xT≥0

c̃T
T ,jxT

and let π̃T ,j be opt. dual solution.
Let

Q̃T (xT−1) := 1
NT

∑NT

j=1 Q̃T ,j(xT−1)

g̃T := − 1
NT

∑NT

j=1 B̃T
T ,j π̃T ,j .

Add cut

LT (xT−1) := Q̃T (xT−1) + g̃T
T (xT−1 − xT−1)

to lower approx. QT used in stage t = T− 1:

QT(·) := max{QT (·), LT (·)}.
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Backward step

At stage t = T − 1:
For xT−2 = xT−2 and for j = 1, . . . ,NT−1, solve:

Q̃T−1,j(xT−2) := min
B̃T−1,jxT−2+ÃT−1,jxT−1=b̃T−1,j

xT−1≥0

c̃T
T−1,jxT−1+QT (xT−1)

and let π̃T−1,j be opt. dual solution.
Let

Q̃T−1(xT−2) := 1
NT−1

∑NT−1

j=1 Q̃T−1,j(xT−2)

g̃T−1 := − 1
NT−1

∑NT−1

j=1 B̃T
T−1,j π̃T−1,j .

Add cut

LT−1(xT−2) := Q̃T−1(xT−2) + g̃T
T−1(xT−2 − xT−2)

to lower approx. QT−1 used in stage t = T− 2:

QT−1(·) := max{QT−1(·), LT−1(·)}.
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Backward step

At stage t = T − 2:

. . .

. . .

. . .

At stage t = 1: solve

LBk ← min
A1x1=b1
x1≥0

cT
1 x1 + Q2(x1)

LBk is, on average, lower bound to ϑ∗ “true” optimal value
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: “True” problem
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SAA problem



SDDP method for Multistage Stochastic Linear Programming

Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Forward step



SDDP method for Multistage Stochastic Linear Programming

Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Backward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Backward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 1: Backward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Forward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Backward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Backward step
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Multistage stochastic programming

SDDP algorithm for multistage SP

SDDP method: Illustration

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure: SDDP iteration 2: Backward step. . .
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Multistage stochastic programming

SDDP algorithm for multistage SP

Summary: KEY IDEAS for SDDP algorithm

Forward step:
sample process ξ1, . . . , ξT ⇒ implementable policy x1, . . . , xT
Repetitions ⇒ Upper bound on true optimal value

Backward step:
Cost-to-go functions

Q̃t(xt−1) =
1

Nt

Nt∑
j=1

 max
B̃t,jxt−1+Ãt,jxt=b̃t,j

xt≥0

c̃T
t,jxt + Q̃t+1(xt)


are convex piecewise-linear functions of xt−1

Refine lower approximations Qt(·) using subgradient

∂
[
Q̃t(·)

]
(x t−1) = − 1

Nt

Nt∑
j=1

B̃T
t,j {πt,j : opt. sol. of dual. . . }

Lower bound on true optimal value
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Multistage stochastic programming

Convergence and main contributions

Proposition (Convergence)

Assume

i. At the forward step, process subsamples are taken
independently of each other

ii. At all iterations, approximated problems

min
A1x1=b1
x1≥0

cT
1 x1 + Q2(x1) and min

B̃t,j xt−1+Ãt,j xt=b̃t,j
xt≥0

c̃T
t,jxt + Qt+1(xt)

have finite optimal value

iii. In the backward step, basical solutions are used

Then, after a sufficiently but finite large amount of iterations of
the SDDP algorithm, the forward procedure defines an optimal
policy for the SAA problem.
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Multistage stochastic programming

Convergence and main contributions

Tractability?

Issue: total number of scenarios ΠT
t=2Nt

Cutting plane for two-stage: bad

SDDP algorithm: generalization of cutting plane method ⇒
even worse?

One run of Backward step: solve 1 + N2 + . . .+ NT LP’s
One run of Forward step: solve 1 + M(T − 1) LP’s

“““Tractability”””:

SDDP method ⇒ construct feasible policy
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Multistage stochastic programming

Convergence and main contributions

THE END
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