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INFORMS Applied Probability Society Meeting

July 10th, 2017

Guido Lagos (Adolfo Ibanez University, Chile) Discretized Brownian motion about random times INFORMS APS Meeting, July 10th, 2017 0 / 7



Motivation: simulation of Brownian motion

Brownian motion — fundamental stochastic process, in theory and
practice.

⇒ Relevant!

Simulation of Brownian motion
continuous time process, violent fluctuations, “self-similar” in time-space
⇒ Challenging!
Some methods: exact simulation of some specially structured events;
approximation on time mesh; approximation on space mesh; wavelet
approximations; so-called ε-strong approximations; to name a few . . .
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Setting and goal
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0.4 Setting: Euler discretization

Brownian motion B on R
Time mesh {0, 1/n, 2/n, . . .}
Bn := piecewise constant approx.

of B on time mesh
∗ B(t + h)− B(t) ∼ N(µh, σ2h). Easy!

PROS ,: simple / efficient / sensible in
some applications
CONS /: little control on accuracy

Goal:

T := time of min of B on [0,1]
T n := same but for approximation Bn

Analyze time error T n − T and
position error Bn(T n)− B(T )
as n→∞.

Also do same error analysis when T is
time of min of B on [0,∞)
first time B hits or goes above
“barrier” function b

Guido Lagos (Adolfo Ibanez University, Chile) Discretized Brownian motion about random times INFORMS APS Meeting, July 10th, 2017 2 / 7



Main results I

Theorem (Euler discretization weak limits)

B Brownian motion on R, with constant drift µ and unit variance,

T := time of minimum of B on time interval [0,1].

Bn Euler discretization of B on mesh {0, 1
n ,

2
n , . . .},

T n := time of minimum of Bn on time interval [0,1].

It holds that
√

n (Bn(T n)− B(T ))
n (T n − T )

=⇒
n→∞

mink∈Z R(U + k) [AGP 1995]
U + arg mink∈Z R(U + k), [us]

with R two-sided Bessel(3) process, U independent uniform[0,1].
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Main results II

Corollary (Gaussian walk limits)

Gaussian walk S with drift µ = 0 and unit variance.
Brownian motion B such that B(k) = Sk for all k ∈ N.

min0≤k≤n Sk − min0≤t≤n B(t)
arg min0≤k≤n Sk − arg min0≤t≤n B(t) =⇒

n→∞

mink∈Z R(U + k)
U + arg mink∈Z R(U + k)

with R two-sided Bessel(3) process, and U independent uniform[0,1].

Intuition: Williams-type
decomposition of Brownian
motion at minimum
Renewal theory flavor. GIF!
Gaussian walk ≈ Brownian
motion. Diffusion approximation.
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Main results III: a collection of results
1 The following converge in distribution to the pair(

U + arg min
k∈Z

R(U + k) , min
k∈Z

R(U + k)
)

where U uniform[0,1], R two-sided Bessel(3) process:(
n ( time error ),

√
n ( position error )

)
for local min of Brownian motion B v/s same

on mesh {0, 1/n, 2/n, . . .}, as n→∞.
( time error , position error ) for local min of Gaussian walk v/s same for Brownian
motion, on time horizon [0, n], as n→∞.(
n ( time error ),

√
n ( position error )

)
for global min of Brownian motion B with

positive drift v/s same on mesh {0, 1/n, 2/n, . . .}, as n→∞.
( time error , position error ) for global min of Gaussian walk v/s same for Brownian
motion, both with drift µ > 0, as µ↘ 0.

2 The following converge in distribution to the pair

( U + k∗ , W (U + k∗) )

where U uniform[0,1], W standard BM, k∗ := min{k ∈ Z+ : W (U + k) > 0}:(
n ( time error ),

√
n ( position error )

)
for hitting time of B to a non-decreasing barrier

v/s same on mesh {0, 1/n, 2/n, . . .}, as n→∞.
( time error , position error ) for barrier-hit of Gaussian walk v/s same for Brownian
motion, to hit barrier b > 0, as b ↗∞.
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A constant in the literature...

For ζ = Riemann zeta function,

−ζ(
1/2)√
2π

=
AGP ’95

E
[
min
k∈Z

R(U + k)
]

=
us

E [W (U + k∗)] .

Constant −ζ(1/2)/
√

2π appears dispersed in literature:

Sequential analysis: Chernoff (1965), Siegmund (1985)
Diffusion approximations: Siegmund (1979), . . .
Euler discretization: Asmussen, Glynn & Pitman (1995), Calvin (1995)
Option pricing: Broadie, Glasserman & Kou (1997), (1999), . . .
Gaussian walks: Chang & Peres (1997), Janssen & van Leeuwaarden
(2007)2, (2013), . . .

Connection was unknown... Our results connect all these papers
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Summary & main contributions

1 We derive limit distributions for normalized discretization errors.
Analytical, closed form.

2 We put limits into context of Brownian motion approximation of Gaussian
walk. These are new results in the theory of diffusion approximation.

3 We provide a unified framework connecting several papers in the
literature where the constant −ζ(1/2)/

√
2π appears.
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Thanks!


