Discretized Brownian motion about random times Limit distributions and random walk approximations

Ton Dieker ¹ Guido Lagos ²

¹Columbia University

²Universidad Adolfo Ibáñez, Chile

INFORMS Applied Probability Society Meeting

July 10th, 2017

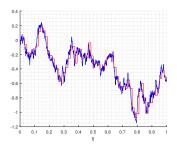
Motivation: simulation of Brownian motion

 Brownian motion — fundamental stochastic process, in theory and practice.

\Rightarrow Relevant!

- Simulation of Brownian motion
 - continuous time process, violent fluctuations, "self-similar" in time-space
 - \Rightarrow Challenging!
 - Some methods: exact simulation of some specially structured events; approximation on time mesh; approximation on space mesh; wavelet approximations; so-called ε-strong approximations; to name a few ...

Setting and goal



Setting: Euler discretization

- Brownian motion B on \mathbb{R}
- Time mesh {0, 1/*n*, 2/*n*, ...}
- *Bⁿ* := piecewise constant approx. of *B* on time mesh
- * $B(t+h) B(t) \sim N(\mu h, \sigma^2 h)$. Easy!
- PROS ©: simple / efficient / sensible in some applications
- CONS S: little control on accuracy

Goal:

T := time of min of B on [0, 1] $T^n := \text{same but for approximation } B^n$ Analyze time error $T^n - T$ and position error $B^n(T^n) - B(T)$ as $n \to \infty$.

Also do same error analysis when T is

- time of min of B on $[0,\infty)$
- first time B hits or goes above "barrier" function b

Main results I

Theorem (Euler discretization weak limits)

B Brownian motion on \mathbb{R} , with constant drift μ and unit variance,

T := time of minimum of B on time interval [0, 1].Bⁿ Euler discretization of B on mesh {0, $\frac{1}{n}, \frac{2}{n}, \ldots$ },

 $T^n := time of minimum of B^n on time interval [0, 1].$

It holds that

$$\frac{\sqrt{n}\left(B^{n}(T^{n})-B(T)\right)}{n(T^{n}-T)} \xrightarrow[n \to \infty]{} \frac{\min_{k \in \mathbb{Z}} R(U+k)}{U+\arg\min_{k \in \mathbb{Z}} R(U+k)} [AGP \ 1995]$$

with R two-sided Bessel(3) process, U independent uniform[0,1].

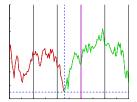
Main results II

Corollary (Gaussian walk limits)

Gaussian walk *S* with drift $\mu = 0$ and unit variance. Brownian motion *B* such that $B(k) = S_k$ for all $k \in \mathbb{N}$.

 $\min_{0 \le k \le n} S_k - \min_{0 \le t \le n} B(t) \xrightarrow{\min_{k \in \mathbb{Z}} R(U+k)} \operatorname{arg\,min}_{0 \le k \le n} S_k - \operatorname{arg\,min}_{0 \le t \le n} B(t) \xrightarrow{n \to \infty} U + \operatorname{arg\,min}_{k \in \mathbb{Z}} R(U+k)$

with R two-sided Bessel(3) process, and U independent uniform[0,1].



- Intuition: Williams-type decomposition of Brownian motion at minimum
- Renewal theory flavor. GIF!
- Gaussian walk ≈ Brownian motion. Diffusion approximation.

Main results III: a collection of results

The following converge in distribution to the pair

$$\left(U + \operatorname*{arg\,min}_{k \in \mathbb{Z}} R(U+k), \quad \min_{k \in \mathbb{Z}} R(U+k) \right)$$

where U uniform[0,1], R two-sided Bessel(3) process:

- (*n* (time error), \sqrt{n} (position error)) for local min of Brownian motion *B* v/s same on mesh {0, 1/*n*, 2/*n*, ...}, as $n \to \infty$.
- (time error, position error) for local min of Gaussian walk v/s same for Brownian motion, on time horizon [0, n], as $n \to \infty$.
- (*n* (time error), \sqrt{n} (position error)) for global min of Brownian motion *B* with positive drift v/s same on mesh {0, 1/*n*, 2/*n*, ...}, as $n \to \infty$.
- (time error , position error) for global min of Gaussian walk v/s same for Brownian motion, both with drift $\mu > 0$, as $\mu \searrow 0$.
- 2 The following converge in distribution to the pair

$$(U+k^*, W(U+k^*))$$

where U uniform[0,1], W standard BM, $k^* := \min\{k \in \mathbb{Z}_+ : W(U+k) > 0\}$:

- (*n* (time error), \sqrt{n} (position error)) for hitting time of *B* to a non-decreasing barrier v/s same on mesh {0, 1/*n*, 2/*n*, ...}, as $n \to \infty$.
- (time error, position error) for barrier-hit of Gaussian walk v/s same for Brownian motion, to hit barrier b > 0, as b ∧ ∞.

A constant in the literature...

For $\zeta =$ Riemann zeta function,

$$-\frac{\zeta(1/2)}{\sqrt{2\pi}} \underset{AGP'95}{=} \mathbb{E}\left[\min_{k\in\mathbb{Z}} R(U+k)\right] \underset{us}{=} \mathbb{E}\left[W(U+k^*)\right].$$

Constant $-\zeta(1/2)/\sqrt{2\pi}$ appears dispersed in literature:

- Sequential analysis: Chernoff (1965), Siegmund (1985)
- Diffusion approximations: Siegmund (1979), ...
- Euler discretization: Asmussen, Glynn & Pitman (1995), Calvin (1995)
- Option pricing: Broadie, Glasserman & Kou (1997), (1999), ...
- Gaussian walks: Chang & Peres (1997), Janssen & van Leeuwaarden (2007)², (2013), ...

Connection was unknown... Our results connect all these papers

Summary & main contributions

- We derive limit distributions for normalized discretization errors. Analytical, closed form.
- We put limits into context of Brownian motion approximation of Gaussian walk. These are new results in the theory of diffusion approximation.
- ³ We provide a unified framework connecting several papers in the literature where the constant $-\zeta(1/2)/\sqrt{2\pi}$ appears.

Thanks!